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The aim of this work is to present a coherent description of the microscopic
theory of surface nonlinear optical spectroscopy for solving practical problems in
understanding the details of the molecular interface. We review the related issues
and show that by following microscopic molecular optics theory, second
harmonic generation (SHG), as well as sum-frequency generation vibrational
spectroscopy (SFG-VS), radiation from a monolayer or submonolayer can be
rigorously treated as the radiation from an induced dipole lattice at the interface.
In this approach, the introduction of an infinitesimally thin polarization sheet as
in macroscopic theory with the Maxwell equations and the boundary conditions
is no longer necessary. As a direct consequence, the ambiguity of the unaccounted
dielectric constant of the interfacial layer is no longer an issue. Moreover, the
anisotropic two-dimensional microscopic local field factors can be explicitly
defined with the linear polarizability tensors of the interfacial molecules. Based on
the planewise dipole sum rule in the molecular monolayer, experimental tests of
this microscopic treatment with SHG and SFG-VS are discussed.
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1. Scope

The aim of this work is to present a coherent description of themicroscopic theory of surface
nonlinear optical spectroscopy for solving practical problems in understanding the details of
the molecular interface. In two recent review articles [1,2], one of which was published in this
review journal, we reviewed some of the theoretical and experimental issues in the
quantitative analysis and interpretation of surface second harmonic generation (SHG) and
sum-frequency generation vibrational spectroscopy (SFG-VS) based on the macroscopic
theory of the surface SHG and SFG-VS. This work intends to add some new flavour to these
previous works by presenting amicroscopic molecular optics theory of the surface SHG and
SFG-VS. With this microscopic description, some of the incompatible issues in the
macroscopic theory are dealt with and more detailed molecular level understanding of the
molecular interface with nonlinear spectroscopy can also be developed.

The past two and half decades have witnessed tremendous advancement and
applications of the interface specific second order nonlinear optical techniques, mainly
surface SHG and SFG-VS, in molecular interface studies [1–25]. To put it simply, SHG is
a second order nonlinear process where two photons with the same fundamental frequency
(!) interact with a nonlinear medium simultaneously to generate a photon with the second
harmonic frequency (2!). If the two fundamental frequencies are not the same, a photon at
the sum of these two frequencies can be generated from the so-called SFG process.
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Because of the symmetry requirement for the second order nonlinear processes, the leading

dipolar term of the SHG or the SFG processes is generally forbidden for a

centrosymmetric bulk medium. Thus, SHG and SFG become effective probes for the

interface between the two centrosymmetric bulk phases [26]. The theoretical foundation
and the experimental demonstration of the interfacial selectivity of SHG as well as SFG

have been pioneered by Shen and his colleagues since the early 1980s [27–34], extending

from the original formulation of light waves at the boundary of nonlinear media by

Bloembergen et al. in the early 1960s [35].
With SHG and SFG-VS, the equilibrium and dynamic behaviour of the molecular

interface or film can be directly measured from the nonlinear electronic or vibrational
spectroscopic response of the interfacial molecular moieties [4,10–13,25]. One particular

aspect of the studies in the past few years has been focused on the quantitative

measurement and interpretation of the molecular orientation and vibrational spectra from

the SHG and SFG-VS measurements on various molecular interfaces [1,2,36–38]. Recent

work also demonstrated that the coherent nature of the surface SHG and SFG-VS
processes makes them more advantageous over the other incoherent spectroscopic

techniques used in surface studies. The interference of the molecular electric field and the

strong polarization dependence in the SHG and SFG-VS response can be employed to

investigate the detailed interactions and to determine the molecular conformations at the

molecular interfaces [39–41].
However, researchers have long realized that the two crucial issues in quantitative

interface studies with SHG and SFG are on how to describe the macroscopic dielectric

constant of the molecularly thin layer and on how to quantitatively evaluate the

anisotropic two-dimensional microscopic local field effect [1,2,42–54]. It has been well

demonstrated that in the majority of cases the calculation of the molecular orientation is

quite sensitive to the values used for these two factors [1,2,51–53].
Moreover, closer examination shows that these two issues are conceptually

incompatible with each other because the currently accepted theory of surface nonlinear

optics is essentially a macroscopic theory, in which the nonlinear radiation was treated as

the result of an infinitesimally thin polarization layer or sheet. In this macroscopic theory

the Maxwell equations with the boundary conditions of a three-layer model were generally

employed. The direct consequence of this approach is that an a priori dielectric constant,

which still does not have a clear microscopic definition, has to be assigned to this
interfacial polarization layer. This incompatibility has actually limited the understanding

and interpretation of the quantitative SHG and SFG-VS data for obtaining more detailed

information on the interfacial molecules. To resolve this incompatibility, a microscopic

theory of the SHG and SFG-VS is in demand.
Here is how this report is to be arranged. After reviewing the background issues and the

related problems, we shall show that a microscopic theory of the SHG/SFG radiation can be

rigorously presented along with a discrete dipole lattice model. In the field far from the

discrete dipole lattice the SHG/SFG radiation is in the same form as in the infinitesimally

thin polarization sheet layer model, validating previously developed macroscopic SHG/

SFG theory. Moreover, in this microscopic theory, the introduction of the polarization

sheet is no longer necessary. Therefore, the ambiguity of the unaccounted dielectric constant
of the polarization layer is no longer an issue. Incidentally, the anisotropic two-dimensional

microscopic local field factors can be explicitly expressed with the linear polarizability
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tensors of the interfacial molecules. Based on the planewise dipole sum rule in the molecular
monolayer, crucial experimental tests of this treatment with the SHG and SFG-VS
experiments are discussed. We shall also discuss the puzzles in the literature of the surface
SHG and SFG spectroscopy studies as discussed above. This microscopic treatment can
provide a consistent theoretical basis for future applications of the quantitative analysis of
the surface SHG and SFG for more detailed molecular level interface studies.

2. Background

There have been incompatibilities in the current macroscopic theory on the SHG/SFG in
dealing with the microscopic properties of the monolayer and submonolayer molecular
interface. In particular, the treatment of the interface dielectric constant and the local field
factors has been an unsettled issue [1,2,42,54]. We intend to introduce the microscopic
molecular optics theory by Wolf et al. into SHG/SFG theory to address these issues
[55,56].

2.1. Problems with the interfacial layer models and the local field factors in the
quantitative analysis of SHG/SFG

In the currently accepted models of the nonlinear optics of interfaces [6,34,42,54,57,58], the
nonlinear radiation was treated as the result of an infinitesimally thin polarization sheet
layer, and as the starting point a macroscopic dielectric constant was assigned to this thin
layer [6,34,57,58]. This model was a natural extension of the original formulation by
Bloembergen and Pershan, where a nonlinear plane parallel slab with a finite thickness
embedded between two linear dielectrics was the source of the SHG radiation. Then
Maxwell’s equations which satisfy the boundary conditions at the two plane interfaces
were solved [35]. However, Bloembergen and Pershan concluded that the surface dipolar
contribution to the SHG signal should be overwhelmed by the quadrupolar radiation in
the much thicker boundary layer, i.e. the bulk region in the vicinity of the interface.
Contrary to this conclusion, later experimental observations demonstrated that the surface
dipolar contribution could be dominant in many cases. By solving Maxwell’s equations
which satisfy the boundary conditions at the infinitesimally thin polarization sheet layer,
Heinz and Shen laid the theoretical foundation for the interface specific SHG, as well as
the SFG-VS, for their applications in interface studies [6,34,57,58].

Parallel to this macroscopic treatment, Ye and Shen employed a classical induced point-
dipole model to include the microscopic local field effect on the nonlinear optical properties
of the adsorbed molecules on a substrate [59]. Shen et al. later realized that from the
theoretical point of view, the dielectric constant in the macroscopic model is not well defined
for a monolayer because it is only a macroscopic or mesoscopic property. Thus, Shen et al.
tried to phenomenologically interpret this macroscopic dielectric constant as a result of the
microscopic local field correction in a monolayer, and they also gave explicit expressions for
the macroscopic Fresnel factors and the microscopic local-field factors [42,54]. In one case,
Zhuang et al. also demonstrated that in a Langmuir monolayer it is satisfactory to treat the
whole molecule with one unique microscopic local field factor derived using a modified
Lorentz three-layer model of the interface [54]. This approach has been widely followed for
quantitative interpretation of the SHG and the SFG-VS data since [1,2].
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However, puzzles and confusions have remained in the SHG and SFG-VS practices on

how the linear macroscopic dielectric constant and the microscopic local field factors, as

described by Ye and Shen, should be used in the quantitative treatment of the
experimental data. In their SHG study of the self-assembled monolayer (SAM) on

a gold substrate, Eisert et al. carefully compared the results with the macroscopic three-

layer model and the two-layer model, as well as the local field corrections. They concluded
that using the two-layer model without local-field correction gave most satisfactory

agreement on the molecular orientation with the results from the NEXAFS and IR

spectroscopy measurements [52]. This work is obviously not consistent with the above

treatment by Shen et al. It was further criticized by Roy on the inconsistency that the SAM
film was considered anisotropic for SHG but assumed to be isotropic in terms of its linear

optical properties [60].
Roy then outlined a macroscopic phenomenological model that treated the linear and

nonlinear optics of the anisotropic interface layer in a single framework, which
nevertheless requires a minimum of six unknown parameters of the interfacial optical

constants even for a uniaxial monolayer in the SHG or the SFG-VS formulation [60,61].

Thus, Roy concluded that the conventional SHG measurement of phase and intensity may

not be enough to determine the orientation of SAM. However, even though the anisotropy
is undoubtedly significant on the nonlinear responses, Roy’s criticism might have

exaggerated the influence of the anisotropy on the linear optical properties within the

monolayer, which in fact only slightly modifies the reflectivity of the surface as judged
from ellipsometry measurements. [26,62–64].

There have been a few experimental and empirical theory studies on the SHG data of

the interfacial monolayer, using different parameters of the macroscopic three-layer model

plus the microscopic local field factors [43–50,52,65–67]. In some cases, generally one of

the two bulk phase values were used as the interfacial macroscopic dielectric constant,
reducing the macroscopic problem to the same as the so-called two-phase model [68,69].

However, because the two-phase model does not consider the different microscopic

properties of the surface molecular layer, it can only phenomenologically describe the
surface SHG process, and it generally fails to quantitatively explain the observed

differences in the SHG measurement. On the other hand, in dealing with the microscopic

local field factors, some works followed the classical dipole model as presented by Ye and

Shen, and the rest followed the simple Lorentz–Lorenz local field expression using the bulk
polarizabilities [66,67].

Another approach completely neglected the treatment of the microscopic local

field effect, and treated the molecular film with a macroscopic three-layer model

[51,53,61,70–74]. In SFG-VS, some considered the film anisotropic, and its optical
constant was determined using the Clausius–Mossotti relationship with the ellipsometry

data of the film [74]. This apparently resulted from the practice of ellipsometry studies,

where it has been generally believed that the macroscopic optical model can be valid

down to the monolayer level [62,63]. In SHG, some considered the film isotropic and the
optical constant can be obtained from the Kramers–Kronig dispersion relationship

measured from the bulk or thin film UV-Visible absorption spectra [51,72,73]. When the

molecule is considered with uniaxial symmetry, the ratio between the dielectric constants
of the fundamental and the SH frequency can be directly determined from the intensity

ratio in the polarization measurements [37,51]. There are also efforts trying to show that
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the dielectric constant of the extremely thin monolayer is just the simple arithmetic

average of the two bulk dielectric constants [53,61,70,71]. Even though the results from

these approaches seemed qualitatively reasonable, neglecting the anisotropic microscopic
local field effects in the molecular monolayer is not likely to be physically sound and

quantitatively reliable.
The molecular orientation obtained from the above approaches from the SHG and

SFG-VS experimental data showed a similar trend. However, the values of the
orientational angle depended quite significantly on the different parameters and surface

models used. Besides all the different approaches in the SHG and SFG-VS data analysis,

experimental studies have shown that the original treatment given by Heinz and Shen with

the infinitesimally thin polarization sheet layer is generally correct. On the other hand,
researchers in the field also agree that the definition of the dielectric constant of the

monolayer or even submonolayer film is unclear and meaningless in macroscopic optics,

because when the film is as thin as one molecular layer the macroscopic reflection and
transmission coefficients simply converge to the bare interface limit [61–63]. Therefore,

even though the treatment provided by Shen and coworkers is generally valid, many issues

still need to be clarified. The key problem in the existing model is that the macroscopic and

microscopic linear optical properties of the nonlinear molecular layer are not compatible.
In practice a more detailed microscopic theory is needed to help understand the detailed

SHG or SFG-VS responses from different molecules or different molecular groups in the

molecular interface or film.
A similar problem has also existed in the polarized attenuated total internal reflection-

Fourier transform infrared (ATR-FTIR) spectroscopy measurement of the orientation of

molecular groups in molecular and biological films [75–76]. It was shown that in ATR-

FTIR studies the simplest two-layer model may give more consistent orientation angles

than those from the more widely used three-layer model [75,78]. Such puzzles in both
linear and nonlinear spectroscopic surface studies certainly call for a microscopic theory in

order to better quantitatively understand and to test the existing surface dielectric models.
Aside from the above, a microscopic theory of molecular crystal surface SHG was

proposed by Munn in the early 1990s [79]. In this formulation, since the surface SHG
response is treated microscopically as a sum of responses from the successive surface

layers, the introduction of a dielectric constant of the surface layer was not required, and

this incidentally yielded a microscopic expression of the dielectric constant of the surface
layer. Subsequent studies by Munn and coworkers used the planewise sum rules in

molecular crystal dielectric theory [80–85] to simulate the linear and nonlinear optical

responses of the model Langmuir–Blodgett films [49,86–89]. In this treatment, Munn et al.

concluded that improper treatment of the local fields can result in significant errors in the
determination of the molecular angle from the SHG data [86,87]. They also showed that in

order not to overestimate the microscopic local field factors for the closely packed

monolayer films, the monolayer itself had to be segmented into several layers [49,89].

In the microscopic theory, the microscopic local field factors depend on the orientation
and distribution of the interfacial dipoles, and the microscopic local field factors are

needed to determine the dipole orientation from the SHG data. Therefore, Pannhuis

and Munn suggested that a self-consistent approach needs to be employed to solve the
problem [87]. This microscopic theory and simulations certainly provided new insights

into the treatment of the SHG from the molecular monolayer as well as multilayers.
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These insights may contain answers to the questions raised above. However, the
implications of these works are yet to be picked up by practitioners in related fields.

2.2. Microscopic molecular optics theory and the discrete dipole lattice model approaches
to the surface SHG/SFG

SHG and SFG-VS have been proven to be sensitive enough to probe interfacial adsorbates
with submonolayer coverage [4,6,11,12]. A question naturally arises about whether the
interface with adsorbates in the submonolayer coverage can be treated as a continuously
thin layer or sheet with the macroscopic theory. One step further: as the interface coverage
increases up to a full monolayer, the question is how the linear and nonlinear optical
properties of the interface layer should be described. To answer these questions, the
treatment based on the discrete induced dipole model seems to be more realistic.
The theoretical tool to be employed is the so-called microscopic molecular optics theory.

According to Born and Wolf, molecular optics theory can directly connect the
macroscopic optical phenomena to the molecular properties, and can provide deeper
physical insight into electromagnetic interaction problems than does the rather formal
approach based on Maxwell’s phenomenological equations [55,56]. Therefore, in contrast
to the infinitesimally thin polarization sheet layer model treated on the basis of the
Maxwell theory, a molecular optics treatment can be developed to describe the coherent
SHG or SFG-VS radiation from a discrete lattice in between the two isotropic phases. In
this work we shall show that even though there are no general methods to solve the
integro-differential equations of molecular optics, the summation, or integration, of the
radiation in the far field from a discrete induced dipole lattice can be rigorously solved
with the application of the principle of the stationary phase for SHG/SFG theory [56].

The discrete induced dipole lattice model is a more realistic description of the molecular
interface than the infinitesimally thin polarization sheet layer model [90]. According to the
Ewald–Oseen extinction theorem in molecular optics, there exists only the incident field in
vacuum and the dipolar microscopic radiation field in vacuum emitted from each induced
dipole [35,55,56]. The calculation of the SHG or SFG-VS radiation from the interface using
the integro-differential equations can thus be greatly simplified from the linear optical
processes. This is because the SHG and the SFG-VS processes are known with interface
selectivity, and the summation or integration of the second harmonic or sum-frequency
radiation fields is only over the two-dimensional discrete interfacial induced dipoles, instead
of over the whole physical space.

Now, the whole SHG and SFG problem is treated microscopically as radiation from the
discrete induced dipoles. The total nonlinear radiation is calculated through summation, or
integration, over the whole dipole lattice. Thus, there is no need to use the Maxwell
equations together with the boundary conditions as in the infinitesimally thin polarization
sheet layer model. This should work because it is known that the Ewald–Oseen extinction
theorem just replaces the role of the boundary condition [55]. Therefore, there is no need to
use the boundary conditions, where a macroscopic dielectric constant has to be given
a priori in order to apply the boundary conditions for a finite volume cell across the
boundary area which contains the molecular monolayer. Consequently, the macroscopic
dielectric constant for the molecular monolayer, which cannot be defined and is a nuisance
parameter in the macroscopic theory, simply disappears in the microscopic theory.
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In their classic paper on nonlinear optics, Bloembergen and Pershan [35] showed
that the approach using the integral equation based on the Ewald–Oseen extinction
theorem reached exactly the same results for the nonlinear response from the nonlinear
plate parallel slab [35,91]. Since in that work the slab was treated as the continuous
medium, the molecular optics approach was more complex and was simply redundant
to the macroscopic theory, i.e. no additional physical insight was reached beyond the
macroscopic approach. In contrast, when the microscopic molecular optics approach
is combined with the discrete dipole lattice model, it can directly connect the
microscopic molecular properties and the macroscopic optical phenomenon. The benefit
is not only the consistency in the theoretical treatment as discussed above, but also the
possibility of having a microscopic molecular theory for the surface nonlinear optics for
future applications in understanding the molecular level details at the molecular
interface.

In the next two sections, the detailed step-by-step derivations using the discrete point-
dipole model and the molecular optics approach to calculating the SHG and SFG
radiation from the two-dimensional dipole lattice are presented. Since the final
macroscopic expressions are expected to be the same as obtained from the macroscopic
theory using the Maxwell equations and macroscopic boundary conditions, only through
these detailed derivations, the physical insights and the connections between the molecular
and macroscopic optical properties of the molecular optics theory can be unambiguously
revealed. The derivations are presented in a deductive way in order to make it easier for the
readers to follow.

3. Linear and nonlinear induced dipole and the local field factors of the monolayer with

the discrete point-dipole lattice model

Here we derive the expressions of the linear and nonlinear induced dipole and
the local field factors of the monolayer with the discrete point-dipole lattice model.
Some aspects of the discussions below can be found in the earlier paper by Ye and
Shen [59].

3.1. Linear and nonlinear induced dipole of the monolayer

In classical molecular optics, the response of the medium to the incident field is described
by means of the electric-dipole moments that are induced in the molecules of the medium
under the action of the incident field [55,56]. When an optical field at a frequency ! is
incident on a medium, it creates an induced dipole at the incident frequency and its higher
harmonics in that medium through the total field that each dipole or molecule experiences.
This total field is called the local field ~Eloc. The higher harmonic induced dipole can be
viewed as the results of multiple interactions with the local optical field. Therefore, they
are only strong enough for detection when the optical field is intense enough. The induced
dipole at the incident frequency is the source of the radiation in the linear processes, while
the others are the source responsible for the radiation in the nonlinear processes. To put it
simply, one has

~�induced ¼ ~�linear
induced þ ~�nonlinear

induced : ð1Þ
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Nonlinear optics has been extensively studied since the invention of the first laser in the
early 1960s [26,92]. Here we only discuss the linear and the second harmonic process in an
optical medium. Considering the fact that both fields in the linear frequency and the
resulted second harmonic can contribute to the induced dipole at the second harmonic
frequency, one has

�i ¼ �
!
i þ �

2!
i

¼ ð�!ix �!iy �!iz Þ

E!
loc, x

E!
loc, y

E!
loc, z

0
B@

1
CAþ ðE!

loc,x E!
loc, y E!

loc, z Þ

�ixx �ixy �ixz

�iyx �iyy �iyz

�izx �izy �izz

0
B@

1
CA

E!
loc, x

E!
loc, y

E!
loc, z

0
B@

1
CA

þ ð�2!ix �2!iy �2!iz Þ

E2!
loc, x

E2!
loc, y

E2!
loc, z

0
BB@

1
CCA: ð2Þ

Here �ij is the linear polarizability tensor and �ijk is the second order nonlinear
polarizability tensor of the each molecule in the laboratory coordinates �(x, y, z) with the
index ijk as either one of the three laboratory Cartesian coordinates. The first term in
Equation (2) is the linear induced dipole, the second term is the induced dipole at the
second harmonic frequency (2!) induced by the field with the fundamental frequency !
through the second harmonic process, and the third term is the induced dipole at 2!
induced by the field with 2! through a linear process. The field with 2! in the third term is
the result of the second term. The molecular polarizability tensors in the laboratory
coordinate system �(x, y, z) can be projected from the molecular polarizability tensors in
the molecular coordinate system �0(a, b, c).

The above is general for any dielectric medium. In the problem we describe below, only
the induced dipoles at the interface with the fundamental and second harmonic frequency
are considered. The case for the sum-frequency works similarly following the same
approach. For the isotropic molecular monolayer, there are two independent linear optical
polarizability tensors in the laboratory coordinate system, �(x, y, z), �xx¼ �yy, and �zz; and
there are three non-vanishing independent � elements, �xxz¼ �yyz¼ �xzx¼�yzy, �zxx¼ �zyy
and �zzz [2,54]. Now the induced dipole moment of eachmolecule can be written explicitly as

�!x ¼ �
!
xxE

!
loc, x

�!y ¼ �
!
yyE

!
loc, y

�!z ¼ �
!
zzE

!
loc, z

�2!
x ¼ �

2!
xxE

2!
loc, x þ �xxzE

!
loc, xE

!
loc, z þ �xzxE

!
loc, zE

!
loc, x

�2!
y ¼ �

2!
yy E

2!
loc, y þ �yyzE

!
loc, yE

!
loc, z þ �yzyE

!
loc, zE

!
loc, y

�2!
z ¼ �

2!
zz E

2!
loc, z þ �zxxE

!
loc, xE

!
loc, x þ �zyyE

!
loc, yE

!
loc, y þ �zzzE

!
loc, zE

!
loc, z:

ð3Þ

3.2. Local field factors of the monolayer

Now, in order to calculate these induced dipoles of the monolayer, the knowledge of the
local fields ~E!loc and

~E2!
loc at the interface needs to be described.
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When an optical field is incident on a molecular monolayer at the interface between
two bulk phases with dielectric constant "1 ¼ n21 and "2 ¼ n22, the induced dipole in the

monolayer and the image induced dipole in the substrate all add to the local field at each
individual molecule within the monolayer. Therefore the total local field is different from
the applied electric field. Then [59,93,94],

~Elocð~rÞ ¼ ~Eð~rÞ þ ~Edipð~rÞ þ ~Edip, Ið~rÞ: ð4Þ

Here, let ~r be the position vector within the monolayer from the centre of the molecule at
the position of the origin. Then ~Elocð~rÞ is the local field at ~r, and it is the sum of three

contributions. Among them, ~Eð~rÞ is the applied field, ~Edipð~rÞ is the field acted at this point
from all the induced dipoles except the one at ~r, and ~Edip, Ið~rÞ is the field created by all the
image-induced dipoles at ~r.

Here the term ~Eð~rÞ is discussed first. In this case, a field of a plane wave at frequency !
is incident at an angle of �i upon the interface from one bulk phase and reflected from the

interface. Because the applied field does not have frequency 2!, one always has
~Eð~r, 2!Þ ¼ 0. For ~Eð~r,!Þ, because of the existence of the interface, the applied electric field
is the superposition of the incident field plus the field reflected from the interface

[59,93,94]. According to the Fresnel formulae [56], the total applied field ~Eð~r,!Þ (Ex,Ey,Ez)
can be determined from the incident electric field ~E0(E0,x,E0,y,E0,z)¼E0ê as follows:

Ex ¼ 1� rpe
i2k1d cos�i

� �
Ex,0 ¼ 1þ

n1 cos�t � n2 cos�i

n2 cos�i þ n1 cos�t
ei2k1d cos�i

� �
Ex,0 ¼ L0xxEx,0

Ey ¼ 1þ rse
i2k1d cos�i

� �
Ey,0 ¼ 1þ

n1 cos�i � n2 cos�t

n1 cos�i þ n2 cos�t
ei2k1d cos�i

� �
Ey,0 ¼ L0yyEy,0

Ez ¼ 1þ rpe
i2k1d cos�i

� �
Ez,0 ¼ 1þ

n2 cos�i � n1 cos�t

n2 cos�i þ n1 cos�t
ei2k1d cos�i

� �
Ez,0 ¼ L0zzEz,0:

ð5Þ

This may be simplified as ~E ¼ ½L0 � ê �E0. Here, �i and �t are the incident angle and the

refraction angle at the interface. k1 is the wavevector in the first bulk phase, and d is the
distance of the dipole from the interface. Generally for the monolayer d� �,
ei2k1d cos�i � 1. In this case, the expression of the Fresnel factor L0ii is simplified to Lii,

which will be expressed in Section 4.
The expression of ~Eð~rÞ in Equation (5) is independent of the structure of the interfacial

monolayer for any interface between two isotropic bulk phases. However, the expressions
of the other two terms in Equation (4) depend on the model of the monolayer structure. In

order to evaluate them, a square lattice model is used to represent the molecular
monolayer. Other kinds of lattice models, such as the hexagonal lattice model, can also be
employed and they shall generate similar results [95,96]. Here we only discuss the case

using the square lattice model.
Bagchi et al. [93,94] and Ye et al. [59] used the classical discrete square point-dipole

model to discuss the linear and nonlinear optical responses of the molecular monolayer,
respectively. Such a square lattice model is illustrated in Figure 1. The dipoles at the
interface form a two-dimensional square lattice with lattice constant a. The two bulk

phases occupy the two semi-infinite spaces of z� 0 and z� 0, respectively, and they are
characterized by the bulk dielectric constants �1 and �2 (the substrate), respectively. The tilt
angle of the dipole with the surface normal is � and its azimuthal orientation angle is
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randomly distributed in the plane of the interface. The distance of the point dipole to the

lower substrate surface is d. The coordinates of each point dipole is then ~Rm,n ¼ ðma, na, dÞ,

where m and n are integer indexes along the x- and y-directions from the origin O(0, 0, 0) in

the plane of the monolayer, respectively.
The contribution to the dipolar field ~Edipð~rÞ at an adsorbed dipole comes from the

neighbouring induced dipoles within the monolayer [94]. As in previous treatments

[59,93,94], the near field approximation of the local field is employed. In the near field

approximation, the magnetic part of the electromagnetic field is ignored, and the

retardation effects are discarded [84,93,94]. This assumption is justified because the

wavelength � of the incident electric field is much larger than the lattice constant a.

Following the work of Bagchi, the electric field at the lattice point R00(0, 0, d) which is

created by the rest of the induced dipoles in the lattice plane is [93,94]

ER00

dip ¼
X1

m,n¼�1

0
3 ~� � ð ~Rmn � ~R00Þ

h i
ð ~Rmn � ~R00Þ � ~�ð ~Rmn � ~R00Þ

2

ð ~Rmn � ~R00Þ
5

¼ ẑ
�z

a3

� �
�0 � x̂ð

�x

a3
Þ þ ŷð

�y

a3
Þ

h i �0
2
: ð6Þ

The CGS unit system is used in this paper, as in many textbooks. Here �i are the

components of the induced dipole ~�. x̂, ŷ, and ẑ are unit vectors in laboratory coordinates.

As shown in Figure 1, here the xy-plane is the plane of the substrate interface and the z-

axis is along the interface normal. The prime symbol 0 denotes that the summation does

not include the origin R00. The constant �0 was evaluated by Topping in 1927 [96]:

�0 ¼ �
X1

m,n¼�1

0 ðm2 þ n2Þ�
3
2 ¼ �9:0336: ð7Þ

In Equation (6), only the induced dipole in the same plane of the interface lattice is

considered. To be more rigorous, molecular layers other than the interface lattice plane

also need to be considered. These layers may be the molecules or atoms of the two bulk

phases, whose polarizabilities differ from those of the dipoles in the interfacial layers.

Phenomenologically, let us define a vertical lattice index l and lattice constant d, with l¼ 0

for the plane of the monolayer rather than the plane with origin O(0, 0, 0). Then the total

Substrate

a

d

O x

yz

e1

e2

q

Figure 1. Illustration of an infinite lattice of point induced dipoles on a substrate interface. a is the
distance between the nearest molecules, or the lattice constant; d is the distance from the centre of the
point dipole to the surface of the substrate; � is the tilt angle of the point dipoles.
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~Edipð~rÞ ¼ ER00

dip þ ER00, l6¼0
dip , with ER00, l6¼0

dip as the induced dipole interaction contribution to the
R0

00 ¼ R00 origin point from the induced dipoles other than the interface lattice plane:

ER00, l6¼0
dip ¼

X1
l¼�1

0
X1

m,n¼�1

3 ~�l � ð ~Rl
mn �

~R0
00Þ

h i
ð ~Rl

mn �
~R0
00Þ � ~�lð ~R0

mn �
~R0
00Þ

2

ð ~Rl
mn �

~R0
00Þ

5

¼
X1
l¼�1

0

�
ẑð
�l
z

a3l
Þ�l0 � x̂

�l
x

a3l

� �
þ ŷ

�l
y

a3l

 !" #
�l0
2

�
: ð8Þ

Here al is the lattice constant of the l layer. The expression here is similar to the expressions
for the image dipole term by Bagchi, Ye et al. [59,93,94]. Here �l0 can be directly derived
from Equation (6):

�l0 ¼
X1

m,n¼�1

3 2ld=alð Þ
2
� m2 þ n2 þ 2ld=alð Þ

2
� 	

m2 þ n2 þ 2ld=alð Þ
2

� 	5=2 : ð9Þ

Here the convergence of �l0 needs to be discussed. When ld� a, we shall have �l0 ! 0. This
indicates that when the lateral separation is much larger than the separation between the
two layers, the contribution from the neighbouring layers is simply negligible. For the case
when d is comparable or even larger than a, to evaluate how quickly this summation
converges with increase of l, Equation (9) can be converted into a more rapidly convergent
series when ld/a	 0 [93,94]:

�l0 ¼ 16	2
X1
m¼0

X1
n¼1

m2 þ n2
� �1=2

exp �4	l
d

al

� �
m2 þ n2
� �1=2
 �

: ð10Þ

Equation (10) indicates that �l0 falls off exponentially as l increases. Generally, when
d� a/2, even the contribution of the immediate neighbouring layer, i.e. l¼
1, can be
neglected. This is the basis for the planewise dipole sum rule in molecular crystal theory,
which shall be discussed in Section 5 [80–85].

The planewise sum rule in molecular crystal theory concluded that the contribution of
the induced dipoles from neighbouring layers contribute insignificantly to the local field of
the induced dipoles in the layer under consideration, compared to that from the induced
dipoles in the same layer. This simple fact has significant implications. When the long
chain molecules are aligned closely at the interface, the length of the molecule is usually
larger than the separation between the two neighbouring molecules. Therefore, the
contribution can only be from the molecular segment layer within the distance in the order
of d� a/2, instead of the contribution from the whole chain of the molecule.

The image dipole contribution is just a special case of Equation (8). Bagchi et al.
discussed and evaluated the image dipole contributions previously [59,93,94]. The image
dipoles are located in the substrate at ~R0mn ¼ ðma, nb,� dÞ, i.e. l¼�2 in the general case
above, and the image dipole is defined as [59,93,94]

�Ið!Þx ¼
�2 � �1
�2 þ �1

ð��xÞ

�Ið!Þy ¼
�2 � �1
�2 þ �1

ð��yÞ

�Ið!Þz ¼
�2 � �1
�2 þ �1

ð�zÞ:

ð11Þ
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Thus, the image dipole contribution can also be calculated with the same procedure as in

Equation (8) [59,93,94]. Ye and Shen concluded that for the typical case of a metal surface,

where (�2� �1)/(�2þ �1)� 1, when d� 2.5 Å with a¼ 5 Å, the image induced dipole

contribution is negligible [59]. Therefore, it is generally accepted that for the dielectric

substrate, where (�2� �1)/(�2þ �1)� 1, this image induced dipole term need not be

considered [43–50,52,88]. Therefore, we shall neglect the image induced dipole term in the

followed treatment.
It should be noted that both the ~Edipð~rÞ and the ~Edip, Ið~rÞ terms have the same

expressions for the fundamental and second harmonic frequencies.
With all the three terms known from above, putting Equations (4), (6) and (8) into

Equation (3), one has

�!x ¼ �
!
xxlxxð!ÞEx

�!y ¼ �
!
yylyyð!ÞEy

�!z ¼ �
!
zzlzzð!ÞEz

�2!
x ¼ lxxð2!Þ�xxzlxxð!Þlzzð!ÞE

!
xE

!
z þ lxxð2!Þ�xzxlzzð!Þlxxð!ÞE

!
z E

!
x

�2!
y ¼ lyyð2!Þ�yyzlyyð!Þlzzð!ÞE

!
yE

!
z þ lyyð2!Þ�yzylzzð!Þlyyð!ÞE

!
z E

!
y

�2!
z ¼ lzzð2!Þ�zxxlxxð!Þlxxð!ÞE

!
xE

!
x þ lzzð2!Þ�zyylyyð!Þlyyð!ÞE

!
yE

!
y

þ lzzð2!Þ�zzzlzzð!Þlzzð!ÞE
!
z E

!
z :

ð12Þ

Here E!i is from Equation (5), and lii are the microscopic local field factors for

the isotropic monolayer using the discrete induced dipole model. liis are derived as

below [59]:

lxxð!iÞ ¼



1þ

�!i
xx

2a3
�0 þ

X1
l¼�1

0 �l,!i
xx

2a3l
�l0

��1

lyyð!iÞ ¼



1þ

�!i
yy

2a3
�0 þ

X1
l¼�1

0
�l,!i
yy

2a3l
�l0

��1

lzzð!iÞ ¼



1�

�!i
zz

a3
�0 �

X1
l¼�1

0 �l,!i
zz

a3l
�l0

��1
:

ð13Þ

Here !i¼! or 2!, and �!i

ii is the linear polarizability tensor which can be calculated from

the molecular polarizability values in the molecular coordinate frame �0(a, b, c).
The summation term in Equation (13) is the dipole interaction from layers other than

the interface layer, which are generally negligible. However, in Section 5, the form shall be

used in the discussion of the segmentation of the chain of the molecules in the molecular

monolayer. The �0¼�9.0336 is for the square lattice model as derived by Topping [96].

Since �0 is negative, lxx¼ lyy is generally larger than unity, while lzz is smaller than unity.

However, when a is small, j�!i
xx�0=2a

3j4 1 can happen; this would result in negative

lxx¼ lyy values even under the normal dispersion condition for the bulk material. This is

unique for the two-dimensional case, and no equivalent phenomena can be found for the

three-dimensional case.
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3.3. Averaged linear molecular polarizability tensors of the monolayer

The molecular polarizability at the experimental coordinates can be expressed in terms of
the coordinate transformation relation: �ij ¼

P
i0, j0¼a, b, c Rii0Rjj0�i0j0 , with R�,�0 as the

element of the rotational transformation matrix from the molecular coordinate system
�0(a, b, c) to the laboratory coordinate system �(x, y, z) [1,97]. For an ensemble of
rotationally isotropic monolayers in the xy-plane, each individual molecule possesses the
same homogeneous distribution in the azimuthal orientation and the twist orientation.
Then, one has

�xx ¼
1

4
� 1þ cos2 �
� �

� �aa þ
1

4
� 1þ cos2 �
� �

� �bb þ
1

2
� sin2 � � �cc

�yy ¼
1

4
� 1þ cos2 �
� �

� �aa þ
1

4
� 1þ cos2 �
� �

� �bb þ
1

2
� sin2 � � �cc

�zz ¼
1

2
� sin2 � � �aa þ

1

2
� sin2 � � �bb þ cos2 � � �cc:

ð14Þ

Here we did not consider the case when the tilt angle � has a distribution width. In that
case, Equation (14) needs to be put into the form with ensemble average over the
distribution of �. In doing the calculations, the polarizability of the molecule or molecular
groups can be obtained from many compiled sources [98–100], or from direct quantum
mechanics calculations.

3.4. Remarks on the microscopic local field factors

The local field corrected linear and nonlinear polarizabilities in Equation (12) are the
sources of the linear or nonlinear radiation from the monolayer at the interface. Their
detailed expressions will not appear in the next section when we try to calculate the total
radiation from the monolayer. The detailed expression in Equations (12), (13), and (14)
can be used for direct calculation of the local field factors and the local field corrected
polarizabilities in general.

The expression in Equation (13) can be slightly different if a non-square lattice model is
assumed. For other geometries, for example, the hexagonal or equitriangular geometry,
the calculation of different geometries can be put forward according to Topping’s
treatment [96].

Equation (13) clearly indicates that when the distance a between the neighbouring
molecules in the monolayer becomes large, i.e. the submonolayer case, the lii value
approaches unity very quickly. This actually defines the meaning of the word ‘local’, by
considering how rapidly the value �0 converges when doing the summation of the dipoles
in the lattice plane over m and n. According to the calculations of Topping and Philpott,
the convergence of the value �0 is generally reached in the fourth digit before m, n510
[84,96]. For a lattice constant of a¼ 5 Å, this means the local field calculation converges
within 5 nm. Since, when a become large, the local field factors in Equation (13) decay to
unity rapidly, the local field can be viewed as localized interactions within a few
nanometres. The planewise sum rule also restricts the local field effect in the z-direction
within only a few angstroms from the dipole under consideration. These facts provide
a definition of the actual range of the local field effects within and away from the
molecular plane under consideration.
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By introducing the microscopic local field factors, the calculation of the response from

an ensemble of induced dipoles to an electromagnetic field is reduced to the calculation of

the summation of the radiation of isolated molecules or molecular dipoles interacting with

the local field.

4. Coherent SHG/SFG radiation in the far field from the discrete interface

induced dipoles

Here we present the calculation of the linear and second harmonic radiation in the far field

according to the two-dimensional lattice of the local field corrected induced dipoles at an

interface between the two isotropic bulk phases. The calculation using the square lattice

model can also be performed with hexagonal or other lattice models. We shall see that

since the radiation in the far field is additive for the radiating dipoles, an ensemble average

treatment of the radiating dipole can be straightforwardly implemented. The following

derivation uses the CGS convention, in order to be consistent with the major textbooks in

the field of nonlinear optics [26,101]. Conventions to convert between the SI unit and the

CGS unit systems in linear and nonlinear optics can be found in the appendices of Boyd’s

textbook [101].

4.1. Radiation from a point dipole

In this problem, the radiation from the point induced dipole ~� at the linear and second

harmonic frequencies is in the upper phase ("1) in Figure 1. Here the originO(0, 0, 0) is at the

centre of the dipole, as illustrated in Figure 2, which is different from the definition in the

previous section. This is for the convenience of calculations in this section. Now, the general

field radiated from an electric dipole � along the z-direction, i.e. �ẑ, in the "1 phase is [56]

Er ¼
2�k31
"1

1

k1rð Þ
3
�

i

k1rð Þ
2

� 

cos �ei

~k1�~r�!t
� �

E� ¼
�k31
"1

1

k1rð Þ
3
�

i

k1rð Þ
2
�

1

k1rð Þ

� 

sin �ei

~k1�~r�!t
� �

E’ ¼ 0:

ð15Þ

Here � is the modulus of the induced dipole, k1 is the wavevector in phase 1, r is the

distance from the point of the dipole to the point of detection at M(r, �, ’) with � as the tilt
angle and ’ as the azimuthal angle in polar coordinates. If we only consider the far field,

which is generally in the experimental measurements except for near-field studies, all the

high order 1/r terms can be neglected. Therefore, only the 1/r term of the E� in

Equation (15) needs to be considered.

4.2. Phase and amplitude of the radiation in the far field from the surface dipole

In the following, the total macroscopic radiation field at a space point R(0, 0,R0) in the

reflection direction can be calculated from the summation of the field of the radiation

directly from the individual induced dipole at the interface and the radiated field reflected
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from the interface. In doing so, the amplitude and phase of the radiated field at R(0, 0,R0)

need to be expressed as a function of the components of individual induced dipoles at the

interface, before the summation can be carried out over them.
The connection between the induced-dipole components �x, �y and �z and their

radiation field components Ex, Ey and Ez at R(0, 0,R0) is illustrated in Figure 3. The total

phase at R(0, 0,R0) can be calculated by choosing the origin O(0, 0, 0) as the reference

point. Therefore the phase difference of the radiation field at R(0, 0,R0) between the dipole

M (r,q,j)

x y

z

θ

j

r

Figure 2. Polar coordinates of an electric dipole with its dipole moment vector along the z-axis. � is
the modulus of the induced dipole, r is the distance from the point of the dipole i.e. O(0,0,0), to the
point of M(r, �,
) in the space. � is the polar angle, and 
 is the azimuthal angle of M(r, �,
).

z

x

y

(Ex,Ey,Ez,) (Ex,Ey,Ez,)

(Ex,Ey,Ez,)

z

x

y

z

x

y

mz (m,n,0)mx(m,n,0) my (m,n,0)

(0,0,R0)

(0,0,R0)

(0,0,R0)

(m,n,0) (m,n,0) (m,n,0)

j j

jθ

θ
θ

Figure 3. Definition of the coordinates system for calculation of the radiation field vector
~EðEx,Ey,Ez) at the fixed space point R(0, 0,R0). The radiation field is created by the three radiating
dipole components, i.e. �x(m, n, 0), �y(m, n, 0), �z(m, n, 0), respectively, located at the lattice point
r(m, n, 0). The tilt angle � and the azimuthal angle ’ are defined differently for the three dipole
components as illustrated.
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at the point r(ma, na, 0) and the fixed origin O(0, 0, 0) can be calculated from the difference

of the two distances RO and Rr, i.e. r(m, n)�R0, with

rðm, nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mað Þ2þ ðnaÞ2 þ ðR0Þ

2

q
: ð16Þ

Now, the phase difference of the incident field at O and r on the dipole plane also needs to

be calculated. When a plane wave is incident on the monolayer at the incident angle �i,

remembering that the incident plane is xz, and m is along the x-direction, this phase

difference is kin1 ðma sin�iÞ. For the case of second harmonic generation, this phase

difference involves two incoming waves, therefore the total phase difference is

2kin1 ðma sin�iÞ.
Therefore, the total phase at the space point R(0, 0,R0) is the sum of all these phase

differences. If we define this total phase of the radiation from the induced dipole at

r(ma, na, 0) to the fixed space point R(0, 0,R0), as k1 f(m, n), one has

f ðm, nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mað Þ2þ nað Þ2þ R0ð Þ

2

q
þ
�kin1
k1
ðma sin�iÞ: ð17Þ

Here, when the radiation frequency is the same as the incoming frequency !, then �¼ 1,

and kin1 ¼ k1; while when the radiation frequency is 2!, then �¼ 2, and kin1 6¼ k1. More

generally, for the case of sum frequency generation (!3¼!1þ!2), the expression for the

second term in f(m, n) becomes

ma

k1ð!3Þ
½kin1 ð!1Þ sin�!1

i þ kin1 ð!2Þ sin�!2

i �: ð18Þ

With the phase known, the radiation field at R(0, 0,R0) generated from the dipole
~�ð�x,�y,�zÞ at r(ma, na, 0) can be calculated separately for each �i according to

Equation (15) with proper projection.
Then the field components Ex, Ey, Ez at R(0, 0,R0) generated by �x at r(ma, na, 0) are

E�x,x ¼ �E�x,� sin � ¼
k21 sin

2 �

"1rðm, nÞ
�xe

iðk1f ðm, nÞ�!tÞ

E�x,y ¼ E�x,� cos � cos ’ ¼ �
k21 sin � cos � cos’

"1rðm, nÞ
�xe

iðk1f ðm, nÞ�!tÞ

E�x,z ¼ E�x,� cos � sin’ ¼ �
k21 sin � cos � sin ’

"1rðm, nÞ
�xe

iðk1f ðm, nÞ�!tÞ

ð19Þ

with

sin � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnaÞ2 þ R2

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnaÞ2 þ R2

0

q , cos � ¼
�maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmaÞ2 þ ðnaÞ2 þ R2
0

q
sin ’ ¼

R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnaÞ2 þ R2

0

q , cos ’ ¼
�naffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnaÞ2 þ R2

0

q :

ð20Þ
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Similarly the field components Ex, Ey, Ez at R(0, 0,R0) generated by �y at

r(ma, na, 0) are

E�y,x ¼ E�y,� cos � cos ’ ¼ �
k21 sin � cos � cos ’

"1rðm, nÞ
�ye

iðk1f ðm, nÞ�!tÞ

E�y,y ¼ �E�y,� sin � ¼
k21 sin

2 �

"1rðm, nÞ
�ye

iðk1f ðm, nÞ�!tÞ

E�y,z ¼ E�y,� cos � sin ’ ¼ �
k21 sin � cos � sin ’

"1rðm, nÞ
�ye

iðk1f ðm, nÞ�!tÞ

ð21Þ

with

sin � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ R2

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnaÞ2 þ R2

0

q , cos � ¼
�naffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmaÞ2 þ ðnaÞ2 þ R2
0

q

sin ’ ¼
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmaÞ2 þ R2
0

q , cos ’ ¼
�maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ R2

0

q :

ð22Þ

Then the field components Ex, Ey, Ez at R(0, 0,R0) generated by �z at r(ma, na, 0) are

E�z,x ¼ E�z,� cos � cos ’ ¼ �
k21 sin � cos � cos’

"1rðm, nÞ
�ze

iðk1f ðm, nÞ�!tÞ

E�z,y ¼ E�z,� cos � sin’ ¼ �
k21 sin � cos � sin ’

"1rðm, nÞ
�ze

iðk1f ðm, nÞ�!tÞ

E�z,z ¼ �E�z,� sin � ¼
k21 sin

2 �

"1rðm, nÞ
�ze

iðk1f ðm, nÞ�!tÞ

ð23Þ

with

sin � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnaÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnaÞ2 þ R2

0

q , cos � ¼
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmaÞ2 þ ðnaÞ2 þ R2
0

q
sin ’ ¼

�naffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnaÞ2

q , cos ’ ¼
�maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmaÞ2 þ ðnaÞ2
q :

ð24Þ

It is to be noted that the two angles � and ’ are not real variables in the above expressions.

They are defined differently as in Figure 3 for each lattice dipole component in order to

simplify the expressions above. The real variables that will be used in the following

calculations are the lattice coordinates ma and na.
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4.3. Radiation field summation over the two-dimensional lattice with the principle of the

stationary phase

Now the total radiation field at R(0, 0,R0) generated by the whole monolayer

at the interface is the summation over the whole lattice plane m(�1,þ1) and

n (�1,þ1):

Ex ¼
X1

m¼�1

X1
n¼�1

E�x,x þ E�y,x þ E�z,x

� �

Ey ¼
X1

m¼�1

X1
n¼�1

E�x,y þ E�y,y þ E�z,y

� �

Ez ¼
X1

m¼�1

X1
n¼�1

E�x,z þ E�y,z þ E�z,z

� �
:

ð25Þ

The summation in Equation (25) for the total radiation field is in principle the discrete

form of the integro-differential equation in molecular optics [55,56]. The asymptotic

result of this summation can be evaluated by employing the condition of the far field.

Because R0 is very large as compared with the lattice constant a and the wavelength �,
the discrete summations in Equation (25) are asymptotic to a continuous integration

over the variable set (x, y)¼ (ma, na). In addition, because R0 is large and so the phase

factor k1f(m, n) is large, the exponential factors in Equations (19), (21) and (23)

oscillate very rapidly and change their signs many times as the point r(ma, na, 0)

explores the domain of integration [56]. Under these conditions, an asymptotic value of

the total electric field (Ex,Ey,Ez) at point R(0, 0,R0) can be obtained with the

application of the following formula, which is derived from the principle of stationary

phase. The details of the stationary phase method can be found in the classic textbook

by Born and Wolf [56].
Here by defining the variables x¼ma and y¼ na with the lattice constant a as a very

small quantity compared to the infinite size of the lattice plane, each term in the

summation as shown in Equation (25) becomes the following integral and this integral is

then asymptotic to the summation of the stationary phase terms as below:

1

a2

Z 1
�1

Z 1
�1

g x, yð Þeik1 f x, yð Þ dxdy ¼
2	i

k1a2

X
j

�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j�j � 
2j

��� ���r g xj, yj
� �

eik1f xj, yjð Þ:
ð26Þ

Here g(x, y) are the pre-exponential factors in Equations (19), (21) and (23). (xj, yj) are the

points in the whole integration domain at which f is stationary, i.e.

@f

@x
¼
@f

@y
¼ 0: ð27Þ

The definition of the other terms are the following:

�j ¼
@2f

@x2

� �
xj,yj

, �j ¼
@2f

@y2

� �
xj,yj

, 
j ¼
@2f

@x@y

� �
xj,yj

ð28Þ
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and

�j ¼

þ1 if �j�j 4 
2j , �j 4 0,

�1 if �j�j 4 
2j , �j 5 0,

�i if �j�j 5 
2j :

8>><
>>: ð29Þ

Using the stationary phase condition in Equation (27) and the expression for f in
Equation (17), a single stationary point (x1, y1) is obtained, and

x1 ¼ �R0 tan�, y1 ¼ 0: ð30Þ

Here �¼�i is the direct result of the stationary phase condition for the linear radiation,
and for the second harmonic radiation � to satisfy the relationship k1ð2!Þ sin� ¼

2kin1 ð!Þsin�i. Similarly, one can also show explicitly that for the sum frequency radiation,
� has to satisfy the relationship k1ð!3Þsin� ¼ kin1 ð!1Þsin�!1

i þ kin1 ð!2Þsin�!2

i . These are
just the condition for the general law of reflection in linear and nonlinear optics, as given
by Bloembergen and Pershan, as derived from the Maxwell boundary conditions [35].
From these results we shall show later that at the far field space point R(0, 0,R0), the
radiation field is in the direction of �, which satisfies the general law of reflection in linear
and nonlinear optics. It is interesting that these conditions came incidentally as a solution
from the molecular optics treatment. This fact further illustrates the general equivalence of
the macroscopic Maxwell equations with boundary conditions and the microscopic
molecular optics treatment [55,56].

Now with the stationary phase point value, we have

f x1, y1ð Þ ¼ R0 cos�

�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�1 � 
21
�� ��q ¼

R0

cos2 �
: ð31Þ

Here �1¼ 1 because �140 and �1�1 � 

2
1 4 0. Now putting all these values into the

expressions in Equation (25), we have the radiation field components at the space point
R(0, 0,R0) that are directly radiated from the whole induced dipole lattice as the following:

ER1
x ¼

2	

a2"1
ik1 �x cos�� �z sin�ð Þeiðk1R0 cos��!tÞ

ER1
y ¼

2	

a2"1
ik1

�y

cos�
eiðk1R0 cos��!tÞ

ER1
z ¼

2	

a2"1
ik1 ��x sin�þ �z

sin2 �

cos�

� �
eiðk1R0 cos��!tÞ:

ð32Þ

4.4. Coherent SHG/SFG radiation in the far field from the induced dipole lattice

In order to calculate the total radiated field at R(0, 0,R0), besides the direct radiation from
the induced dipoles at the interface, the radiation in the forward direction which is
reflected from the interface also needs to be evaluated. The above procedures can be
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repeated to calculate the radiated field at the image point Ri (0, 0,�R0) in the isotropic

phase "1 from the whole induced dipole lattice. We have

ET1
x ¼

2	

a2"1
ik1 �x cos�þ �z sin�ð Þeiðk1R0 cos��!tÞ

ET1
y ¼

2	

a2"1
ik1

�y

cos�
eiðk1R0 cos��!tÞ

ET1
z ¼

2	

a2"1
ik1 �x sin�þ �z

sin2 �

cos�

� �
eiðk1R0 cos��!tÞ:

ð33Þ

Because the choice of the space point R(0, 0,R0) and Ri (0, 0,�R0) is rather arbitrary, and

the radiation field components in Equations (32) and (33) are both directional and the

amplitudes of both plane waves are independent of the value of R0, the coherence of the

radiation from the induced dipole lattice is conserved at the far field.
According to the Fresnel formulae [56], the amplitudes of the reflected electric field

components are

ER2
x ¼ �rpE

T1
x ¼

n1 cos�t � n2 cos�i

n2 cos�i þ n1 cos�t
ET1
x

ER2
y ¼ rsE

T1
y ¼

n1 cos�i � n2 cos�t

n1 cos�i þ n2 cos�t
ET1
y

ER2
z ¼ rpE

T1
z ¼

n2 cos�i � n1 cos�t

n2 cos�i þ n1 cos�t
ET1
z :

ð34Þ

The phase difference between the direct radiation field and the reflected field is determined

by the distance between the dipole layer and the interface d and the radiation angle � as

2k1d cos �. Therefore the total radiation field at R(0, 0,R0) is the phase shifted sum of the

ER1 and ER2 fields in Equations (32) and (34). We have

Ex,total ¼
2	

a2"1
ik1 �x cos���z sin�� r2pð�x cos�þ�z sin�Þei2k1d cos�
� �

eiðk1R0 cos��!tÞ

¼
2	

a2"1
ik1 cos�L0xx�x � sin�L0zz�z

� �
eiðk1R0 cos��!tÞ

Ey,total ¼
2	

a2"1
ik1

�y

cos�
þ r2s

�y

cos�
ei2k1d cos�

� �
eiðk1R0 cos��!tÞ

¼
2	

a2"1
ik1

1

cos�
L0zz�y

� �
eiðk1R0 cos��!tÞ

Ez,total ¼
2	

a2"1
ik1 ��x sin�þ�z

sin2 �

cos�
þ r2s �x sin�þ�z

sin2 �

cos�

� �
ei2k1d cos�

� �
eiðk1R0 cos��!tÞ

¼
2	

a2"1
ik1 � sin�L0xx�x þ

sin2 �

cos�
L0zz�z

� �
eiðk1R0 cos��!tÞ:

ð35Þ

Here the induced dipole components �x, �y, and �z are as defined in Equation (12), and

the L0ii are as defined in Equation (5). Considering the fact that the thickness of the
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monolayer is generally much smaller than the magnitude of the optical wavelength, i.e.

d� �, the phase factor ei2k1d cos� ! 1. Therefore, L0ii becomes

Lxx ¼
2n1 cos�t

n2 cos�i þ n1 cos�t
¼

2"1k2z
"2k1z þ "1k2z

Lyy ¼
2n1 cos�i

n1 cos�i þ n2 cos�t
¼

2k1z
k1z þ k2z

Lzz ¼
2n2 cos�i

n2 cos�i þ n1 cos�t
¼

2"2k1z
"2k1z þ "1k2z

:

ð36Þ

These expressions differ from the expression given by Wei et al. [42] in the Lzz term by

a factor of "1. In most cases, the upper phase is either vacuum or air, therefore "1¼ 1 and

there is no influence on the actual Lzz value. However, when "1 6¼ 1 as for the buried

interface, such a difference can be significant. The Lzz expression given by Wei et al. [42]

was the result with a three-layer model when the middle phase, i.e. the interface layer, is

considered a thin but macroscopic layer. As discussed in Section 5.1, such a three-layer

assumption is physically inappropriate for the submonolayer and monolayer cases.
These Lii values are clearly the results for the two-phase model. This indicates explicitly

that when dealing with the macroscopic electric field at the interface, the existence of the

interfacial molecular monolayer or submonolayer has no influence on the macroscopic

field, as long as the microscopic local field effect has been considered. Therefore, the

problem of the linear macroscopic dielectric constant for the interface layer is not a issue in

this treatment. This shall be discussed in detail in Section 5.1.
Now the radiation field components in the second harmonic frequency are

E2!
x ¼

2	

a2"1ð2!Þ
ik2!1 cos�2!L

2!
xx�

2!
x � sin�2!L

2!
zz �

2!
z

� �
eiðk

2!
1
R0 cos�2!�2!tÞ

E2!
y ¼

2	

a2"1ð2!Þ
ik2!1

1

cos�2!
L2!
zz �

2!
y

� �
eiðk

2!
1
R0 cos�2!�2!tÞ

E2!
z ¼

2	

a2"1ð2!Þ
ik2!1 � sin�2!L

2!
xx�

2!
x þ

sin2 �2!

cos�2!
L2!
zz �

2!
z

� �
eiðk

2!
1
R0 cos�2!�2!tÞ:

ð37Þ

Here k2!1 ¼ 2!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"1ð2!Þ

p
=c, where c is the velocity of light in vacuum. Now with the second

harmonic field components determined, the intensity of the SH field can be directly

calculated by the magnitude of the time averaged Poynting vector as defined below [101]:

Ið!Þ ¼
c

2	

ffiffiffiffiffiffiffiffiffiffiffi
"1ð!Þ

p ��Eið!Þ
��2: ð38Þ

Then put the expressions in Equations (37) and (12) into Equation (38), and after taking

care of the proper projection coefficients of the fundamental and second harmonic electric

fields, we have

Ið2!Þ ¼
32	3!2 sec2 �2!

c3½�1ð2!Þ�
1=2�1ð!Þ

j�effð2!Þj
2I2ð!Þ ð39Þ

�eff ¼ ½Lð2!Þ � êð2!Þ� � �ð2!Þ : ½Lð!Þ � êð!Þ�½Lð!Þ � êð!Þ�: ð40Þ
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Here I(!) is the intensity of the incident laser beam as defined in Equation (38), and
�2! is the outgoing angle of the second harmonic radiation from the surface normal.
�1(!) and �1(2!) are the bulk dielectric constants of the upper bulk phase at the
frequency ! and 2!, respectively. êð2!Þ and êð!Þ are the unit vectors of the electric field
at 2! and !, respectively. L(2!) and L(!) are the tensorial Fresnel factors for 2! and
!, respectively, as defined in Equation (36). The scalar property �eff(2!) is the effective
macroscopic second-order susceptibility of the interface. The �(2!) represents the
area-averaged macroscopic second harmonic susceptibility tensors defined as �ijk(2!)¼
lii (2!)ljj (!)lkk (!)�ijk/a

2
¼Nslii (2!)ljj (!)lkk (!)h�i0j0k0i, with a as the lattice constant, Ns as

the surface number density, and h i represents ensemble average over different
orientational distributions.

Even though the treatment here is based on the discrete lattice model and molecular
optics treatment, as expected the expressions in Equations (37) and (39) are exactly the
same as those in the previous treatment by Heinz and Shen for the infinitesimally thin
nonlinear polarization sheet using the Maxwell equations and boundary conditions
[6,34,54,57,58]. This indicates that the treatment with the square point-dipole lattice model
together with a molecular optics approach presented here is correct.

It can be shown accordingly that for the SFG from the interface,

Ið!SFÞ ¼
8	3!2 sec2 �SF

c3½�1ð!SFÞ�1ð!1Þ�1ð!2Þ�
1=2

���effð!SFÞ
��2Ið!1ÞIð!2Þ ð41Þ

�eff ¼ ½Lð!SFÞ � êð!SFÞ� � �ð!SFÞ : ½Lð!1Þ � êð!1Þ�½Lð!2Þ � êð!2Þ�: ð42Þ

4.5. Remarks on the microscopic SHG/SFG theory

The following points need to be further illustrated for the formulae derived above.

(a) The expressions in Equations (37) and (39) were obtained through the square
induced dipole lattice model. Using other types of plane lattice model can also give
the same asymptomatic expressions at the far field, except that the area-averaged
macroscopic second harmonic susceptibility tensors may take slightly different
expressions. The near field results would be different for different lattice models,
because generally no analytical asymptomatic results can be reached for the near
field case. In other words, the molecular optics approach described here can also
be used to treat the near field cases; this is a clear advantage of the molecular optics
approach.

(b) Here the area-averaged macroscopic second harmonic susceptibility tensors
�ijk(2!) and the factor 1/a2 in Equation (37) needs to be discussed. a2 is the
average area per induced dipole in the lattice plane under the square induced-
dipole lattice model. It comes into the expression naturally because of the
summation, or integration, over the whole lattice plane. Therefore, �i/a

2 is the
area averaged induced dipole, and �ijk(2!) is the area-averaged macroscopic
second harmonic susceptibility tensor. In the previous macroscopic treatments
on second harmonic generation [6,57], an infinitesimally thin polarization sheet
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layer was used, and the polarization for this interface layer was defined in the

form of P(2!)¼�(2!)�(z) :E(!)E(!), or sometimes P(2!)¼�(2!) :E(!)E(!),
and then put into the Maxwell equations [6,26,57,102]. In this way, it is

confusing when making the dimensional analysis of the formulae when trying to

apply the interface polarization term in the Maxwell equations. However, in the

microscopic molecular optics treatment, there is no ambiguity in this case, and

the �(2!) tensor has to have the dimension of an area-averaged second order

nonlinear polarizability.
(c) The ensemble average of the �ijk(2!) tensors. In the calculation of the

summation and its asymptomatic results in the far field, the actual size of the

lattice constant a can be treated arbitrarily as long as the lattice constant a is

microscopic, i.e. much smaller than the optical wavelength. Because the total

radiation is additive as in Equation (25), even though the surface is not

a square lattice for each individual dipole, one can always divide the surface

layer into the square lattice with microscopic unit cells each containing a group

of individual neighbouring induced dipoles. Therefore, this approach actually

allows making an ensemble average within each unit cell. It even allows the unit

cell to contain several layers of molecules close to the interface region. This

further allows the inclusion of the contributions of the quadrupolar terms, the

interfacial discontinuity terms, as well as the field induced third order terms

into the effective unit induced dipole cell at the interface region

[6,26,31,35,102,103]. This also indicates that even for surfaces where the

point-dipole model is no longer valid, the macroscopic expression should still be

the same, and the surface can still be divided into unit cells and be treated as

discrete microscopic nonlinear emitters. Of course, each of these different

microscopic models has to be treated with different microscopic descriptions

and analysed according to the symmetry properties of the area-averaged

effective microscopic polarizability tensor terms �ijk of the unit cell as defined.

Thus, Equations (37) and (39) are general for the second harmonic generation

from the whole interface region. Now it is also possible to make a microscopic

treatment or calculation with different microscopic models of the interface

region. A similar treatment can be performed for the sum frequency generation

process from the interface.

Here the useful general expressions of SHG from a rotationally isotropic molecular

interface are summarized below. If we let �in be the polarization angle of the incident

electric field, let 
out be the polarization angle of the second harmonic electric field,

�eff,�in�
out be the corresponding effective macroscopic nonlinear susceptibility, then

�eff,�in�
out of an achiral interface can be expressed as linear combinations of the three

independently measurable terms with the following polarization combinations: sin-pout,

45�in-sout, pin-pout, with s as the polarization perpendicular to the incident plane, and p as

the polarization in the incident plane. Let �! and �2! be the incoming and outgoing

angles, respectively. One has [2]

�eff, �in�
out ¼ �eff, 45��s sin 2� sin 
 þ �eff, s�p sin
2 �þ �eff, p�p cos

2 �
� 	

cos 
 ð43Þ
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with

�eff, s�p ¼ Lzzð2!ÞLyyð!ÞLyyð!Þ sin�2!�zyy

�eff, 45��s ¼ Lyyð2!ÞLzzð!ÞLyyð!Þ sin�!�yzy

�eff, p�p ¼ �2Lxxð2!ÞLzzð!ÞLxxð!Þ cos�2! sin�! cos�!�xzx

þ Lzzð2!ÞLxxð!ÞLxxð!Þ sin�2! cos
2 �!�zxx

þ Lzzð2!ÞLzzð!ÞLzzð!Þ sin�2! sin
2 �!�zzz:

ð44Þ

For a chiral interface, an additional term �eff,chiral has to be included with the non-zero

chiral susceptibilities, i.e. �xyz¼�xzy¼��yzx¼��yxz [104]. One has,

�eff, �in�
out ¼ �eff, 45��s sin 2�þ �eff, chiral cos
2 �

� 	
sin 


þ �eff, s�p sin
2 �þ �eff, p�p cos

2 �þ �eff, chiral sin 2�
� 	

cos 
 ð45Þ

with

�eff, chiral ¼ 2Lxxð2!ÞLyyð!ÞLzzð!Þ sin�! cos�!�xyz: ð46Þ

Details of the quantitative experimental measurement and interpretation of the interface

SHG, as well as the SFG-vibrational spectroscopy, of molecular interfaces with these

formulations can be found in the recent literature [1,2].

5. Evaluation of the local field factors in the quantitative SHG/SFG spectroscopy

Two of the central issues with general interests in the quantitative interpretation of the

SHG and SFG-VS data are whether the molecular monolayer has a linear macroscopic

dielectric constant and how the microscopic local field effects is evaluated. Many

researchers already provided most of the answers as reviewed in the Introduction above,

and we are trying to present a coherent picture here with the formulation above. Based on

the microscopic treatment of the SHG and SFG-VS from the molecular interface, these

issues are to be discussed.

5.1. Disappearance of the linear macroscopic dielectric constant of the molecular

monolayer or submonolayer

Concern for the linear macroscopic dielectric constant of the interface stems from the

beginning of the development of SHG and SFG-VS as quantitative surface spectroscopic

probes [26]. These insights and discussion led to the later treatment by Shen to replace the

macroscopic dielectric constant of the interface layer in the early treatment [26,34,57] with

microscopic local field factors [42,54,59]. Here the rigorous molecular optics treatment in

Sections 3 and 4 with the discrete induced dipole lattice model can provide a solid

foundation for this approach.
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According to the microscopic molecular optics treatment, the linear macroscopic

dielectric constant of the monolayer or submonolayer is no longer an issue as described in

the detailed derivations in Sections 3 and 4.

(a) Firstly, we consider a few nonlinear induced dipoles situated at the interface

between the two isotropic bulk phases, for example, the vacuum–metal or the

fluid–solid interfaces. The interface induced dipoles are situated in the vacuum

phase and they do not even form an interface layer. Therefore, under the

submonolayer condition up to a full monolayer condition, the treatment as

presented in Sections 3 and 4 with the discrete induced dipole lattice model is

rigorous, and no linear macroscopic dielectric constant can be invoked for the

molecular layer. When this is validated, then consider the case that there is an

additional submonolayer up to a full monolayer on top of the first full monolayer

at the air–metal interface. The treatment of this top layer must be the same, i.e. no
need to invoke a linear macroscopic dielectric constant for this top layer, and only

the microscopic local field effect, i.e. the dipole screening effect, need be considered

[59,93]. Since the interface layer in between any two isotropic bulk phases is usually

one or a few molecular monolayers thick, the discrete induced dipole lattice model

must be a generally realistic treatment of the interface problem. In simple words,

this implies that there is no need to invoke the linear macroscopic dielectric

constant for the interface consisting of a few molecular layers.
(b) Secondly, let us consider the case of submonolayer adsorption of organic

molecules at the air–liquid interface, e.g. a submonolayer of surfactant molecules

at the air–water interface. Since the air–water interface is known to be sharp at less

than 4 Å [105–107], one can surmise that the hydrophobic part of the adsorbed

molecule is in the air phase and the hydrophilic part is in the water phase. In this
case, the treatment in Sections 3 and 4 with the discrete induced dipole lattice

model can be used to treat the head and tail groups, respectively, especially for the

SFG-VS when the tail and the head group of the interfacial surfactant molecule are

probed with different vibrational frequencies. The radiation from the molecular

induced dipole in phase 2 ("2) can be treated similarly and readily as in Sections 3

and 4. Nevertheless, in these cases, the continuous surface sheet layer model does

not provide a realistic representation of the microscopic molecular picture.

In the above cases, the linear macroscopic dielectric constant of the interface layer

should not be a concern for surface nonlinear optics whenever the surface contribution is

dominant. Therefore, the macroscopic optical field at the interface can be well described

with an explicit two-phase model, as in Equation (36). The major concern by Roy [60] on the

macroscopic linear anisotropy of the interface monolayer in the SHG treatment is not a real

issue, at least for the submonolayer up to the monolayer regime [26]. Nevertheless,

according to the treatment presented in Sections 3 and 4, the local field effects of the induced

dipoles at the interfaces need to be treated accordingly. This separation of the macroscopic

and the microscopic anisotropy of the interfacial monolayer ensures the simplicity and

effectiveness in the interpretation of the surface SHG and SFG-VS data.
Of course, the above discussion may not be entirely suitable for the situation when the

interface consists of a large number of layers of anisotropic nonlinear induced dipoles and

becomes macroscopic. However, as long as such a film is thin enough not to significantly
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alter the macroscopic reflection and transmission coefficients of light from the interface
between the two isotropic phases, there is no reason that one should worry about the issue
of the linear macroscopic dielectric constant of the film itself [26,60].

5.2. Planewise dipole sum rule and local field factor in the interface layer

The treatment of the microscopic local field effect is expressed in Equation (13) in
Section 3. In order to implement these formulae to correctly calculate or evaluate the local
field factors in the monolayer, the planewise dipole sum rule in molecular crystal dielectric
theory needs to be discussed [80–85]. The planewise dipole sum rule in studying the
interface problem was discussed by Munn et al. in the 1990s [49,86–89]. However, its
implications have not been picked up by practitioners in the SHG and SFG-VS
community. These issues need to be addressed.

Let us look at the problems in the quantitative interpretation of the SHG measurement
data. In their SHG studies of a self-assembled-monolayer (SAM) at a gold substrate,
Eisert et al. carefully compared the results with the macroscopic three-layer model and
the two-layer model, as well as the local field corrections. They concluded that using the
two-layer model without local-field correction gave most satisfactory agreement of the
molecular orientation with the results from the NEXAFS and IR spectroscopy
measurements [52]. According to Eisert et al., the parameters used to calculate the local
field factors in Equations (13) and (14) of the pNA [O2N–C6H4–] monolayer in the SHG
experiment are: a¼ 5 to 5.5 Å, �aa¼ �bb¼ 16.4 Å3, �cc¼ 27.3 Å3, and �� 52� from
NEXAFS measurement. Then, one has �xx¼ �yy¼ 19.8 Å3 and �zz¼ 20.5 Å3, then
lxx¼ lyy¼ 3.51 to 2.16 and lzz¼ 0.403 to 0.473. Therefore, the effective microscopic
dielectric constant defined as "0 ¼ n02¼ lyy/lzz becomes 8.71 to 4.57, or n0 ¼ 2.95 to 2.14.
Here the definition "0 ¼ n02¼ lxx/lzz follows the definition by Wei et al. [42]. These are
unreasonably large values and the calculation by Eisert et al. concluded that in order to get
�� 52� from the SHG data, n0 has to be close to unity, i.e. neglecting the microscopic local
field effect.

This conclusion by Eisert et al. is in direct disagreement with the formulation provided
by Shen et al. [42]. However, the formulation with the microscopic local field factors by
Shen et al. is validated by the treatment in this work. When the molecule is longer than
their separation, the point-dipole model is no longer valid. Therefore, the premise for the
formulae to calculate the local field factors provided by Shen et al. [42] is no longer valid.
Therefore, the answer to the difficulties of Eisert et al. in calculating the local field factors
lies in the planewise dipole sum rule [80–85]. Munn et al. in the 1990s started using it to
tackle the problem of the overestimation of the local field factors by putting the linear
polarizability of the whole molecule into Equation (13) [49,86–89].

The planewise dipole sum rule was originally developed in explaining optical and
dielectric phenomena in molecular crystals, such as the long range coupling of the exciton
in the molecular crystal, in the early 1970s [80–85]. It has been known that the plane sum in
the summation of the dipole–dipole interaction as in Equation (6), which leads to
expressions of the local field factors in Equation (13), falls off exponentially as the
perpendicular distance from the plane of the origin increases [83,84]. Philpott et al. showed
that even for strong dipoles in molecular crystals, the contribution of the immediate
neighbouring layer is less than 1% of the contribution of the plane of the origin, and the
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total sum of all the rest of the layers up to infinite distance, other than the plane of origin,

is generally less than 10% [83,84].
When the lateral distance between molecules is smaller than the length of the molecule,

there is no reason to view the molecule as a whole when calculating the local field factors
using Equation (13). Munn et al. thus proposed a bead model to divide the interface long

chain molecule into a chain of sphere beads in calculating the local field factors for

each submolecular segment layer for the long chain molecules in the Langmuir–Blodgett

film [49,86–89]. This bead model also unknowingly supported the calculations by Ye and

Shen on the contribution of the local field factors from the image induced dipoles at

a vacuum–metal interface [59]. They conclude that for "metal¼ 10, i.e. ("� 1)/("þ 1)� 1,
when d/a41/2, the image-induced dipole contribution is negligible. Here d/a41/2 is just

the sphere bead condition in Munn’s treatment if the interfacial induced dipole and its

image induced dipole are considered as a whole.
In our treatment, the planewise dipole sum rule is explicitly described with

Equation (10). Evaluation of the �l0 term indicates that in most cases, even the immediate

neighbouring term, i.e. l¼
1, is often negligible when d is larger than 3 Å. This indicates
that when dealing with the local field factor calculations with Equation (13), the depth of

the segmentation of the molecular layer is generally no more than 3 Å. However, this

number may not be correct for the big chromophores with conjugate structures, which

may require quantum mechanical treatment or more complex models rather than the

simple classical dipole model.
With the planewise dipole sum rule in mind, now one can understand why in the

Eisert et al. case [52] the local field factors are overestimated compared to the actual

value. Because the SAM monolayer is closely packed, if one uses the �ii value of the

whole pNA group, the lii factors should deviate further from unity. If one uses the

sphere bead model, the lii is going to be much closer to unity. Actually, if we closely

inspect the formulae in Equation (13), one can expect that when j�ii �0/2a
3
j41, then

lxx and lyy can even become a large negative value. If the sphere bead model is not

used, a closely packed long chain molecular monolayer would easily have

unreasonable local field factors according to Equation (13) without considering the

planewise sum rule. Therefore, the planewise dipole sum rule is very important and

has to be implemented for the evaluation of the microscopic local file factors in the

molecular monolayer.
One direct conclusion from the segmentation of the interfacial molecules for the

implementation of this planewise dipole sum rule is that because the different groups in the

same molecule have different linear polarizabilities, and because the same molecular group

may have different polarizabilities at different frequencies, their local field factors can be

significantly different when these groups occupy different segmented layers when the
monolayer is closely packed. This immediately poses questions to the practice of using the

same and simple value for the interface local field factors in SHG and SFG-VS studies

[54,61,71]. One of the example is for the SHG and SFG-VS studies of the 5CT [CH3–

(CH2)4–(C6H4)3–CN] monolayer at the air–water interface [54]. In the interpretation of the

SHGmeasurement of the –(C6H4)3–CN chromophore and the SFG-VSmeasurement of the

–CH3 and –CN groups of the 5CTmonolayer, the same local field factor value, i.e. n0 ¼ 1.18,
was used for all three molecular chromophore or groups. Close inspection shows that the

orientational angle thus obtained is actually inconsistent with other studies [108–112].
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Therefore, whether the same n0 ¼ 1.18 value is suitable for the three groups needs to be

re-examined.
In a recent study in our research group, using a self-consistent approach we found that

n0(800 nm)� 1.5 and n0(400 nm)� 2.5 for the –(C6H4)3–CN chromophore from the SHG

data, significantly different from that of the –CH3 or –CN group, and consistent with the

large polarizability of the –(C6H4)3–CN chromophore [110,111]. The orientational angle

thus obtained for the –(C6H4)3–CN chromophore in the closely packed Langmuir

monolayer at the air–water interface is about 20� � 30�, consistent with the orientational

angle obtained in other studies [108,109].
Now, if the "0 or n0 values were different, then why, in past SFG-VS studies, was it quite

successful to use simple values such as n0 ¼ 1.18, or why use the average value of the optical

constant of the two neighbouring bulk phases for molecular groups and chromophores at

the common dielectric interfaces [1,2,54,61,71,112]? Here we can show that these values are

actually quite reasonable approximations of the common simple molecular groups such as

–CH3, –C¼O, etc. at the interface.
The experimental linear polarizability values of many common molecular group are as

listed in Table 1 [98–100]. The values for simple organic groups are typically in the range

1.5–3.0 Å3. Considering that the segmentation depth is expected to be no more than 3 Å for

simple molecules with no big chromophores with conjugated structure, as a realistic

approximation, the typical � value used in the calculation is set in between 2 and 4 Å3.

Considering the fact that at the molecular interface a typical molecular group per area is

about 20 Å2 (square lattice constant a� 4.5 Å) to 30 Å2 (a� 5.5 Å), the simulations in

Table 2 shown that the typical "0 values for these groups are 1.17–1.56, i.e. n0 ¼ 1.08–1.32,

Table 1. Experimental polarizabilities values for common molecular
groups from the literature [99].

Group � (Å3) Group � (Å3)

–COOH 2.86 –SH 3.47
–CH3 2.24 –CN 2.16
–CH2– 1.84 –NH2 1.76
–C¼O 1.82 H2O 1.45

Table 2. Simulation of local field factors �0 and n0 with the � value between
2 and 4 Å3. The case for �¼ 1.5 Å3 is the simulation results of the interfacial
water molecules.

� (Å3) a (Å) lxx¼ lyy lzz �0 n0

2.0 4.5 1.11 0.84 1.33 1.15
2.0 5.5 1.06 0.90 1.17 1.08
4.0 4.5 1.25 0.72 1.74 1.32
4.0 5.5 1.12 0.82 1.37 1.17
1.5 3.5 1.19 0.76 1.56 1.25
1.5 4.0 1.12 0.83 1.36 1.16
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depending on the lattice constant and the value of the polarizability. The commonly used
value n0 ¼ 1.18 is just around the mid-point.

In the above calculation we assumed that the monolayer is closely packed. If the
interfacial monolayer is sparse, the local field effect should be small. However, for the
situation of submonolayer adsorption at the liquid–liquid interface, the dipole interactions
of the solvent molecules in the interface plane need to be considered. Thus, these n0 values
are generally in between the vacuum and the substrate dielectric constant, as used in the
literature. They are also close to the estimation made by Zhuang et al. using a modified
Lorentz model of the interface [54], and the simple average of the optical constant of the
two adjacent isotropic bulk phases [53,61,71]. However, even though these values worked
almost fine, the models and the reasoning behind it prevented the treatment of the
different molecular groups at the molecular interface. With the development of laser
techniques and the measurement methodology in surface SHG and SFG-VS [1,2,40,41],
now such detailed difference can be measured in careful experiments. This should provide
new opportunities for the interface studies.

Of course the above simple estimation does not include the bigger chromophores, such
as phenyl, biphenyl, etc. Their polarizability is generally much larger, and the local field
effects can be much stronger when they are closely aligned at the interface. According to
Equation (13), it is possible to have lxx¼ lyy to be smaller than unity or even go to negative
values, and lzz to be larger than unity, when the molecules with relatively large linear
polarizability are closely packed even far from resonance. These are unique phenomena for
the two-dimensional anisotropic local field factors. According to the Lorentz relation, this
is not possible for optical bulk materials with normal dispersion. Such phenomena
certainly have yet to be explored experimentally.

The local field factors in the molecular layer are dependent on the orientation and also
on how the segmentation is done, and one generally does not have detailed knowledge of
this information before knowing the local field factors. Therefore, different approximation
approaches were employed in past SHG and SFG-VS studies. Similar to what Munn et al.
did previously [49,86–89], we invoked the planewise dipole sum rule here to show that in
calculating the local field factors using the microscopic point-dipole model with the
formulae in Equation (13), extreme care must be taken in order not to overestimate the
local field effects. However, this does not imply that the sphere bead model always
generates more reasonable results for the local field factors. We want to point out that
when the square lattice constant is close to or even smaller than the size of the molecule
under studying, the simple point-dipole model is expected to break down, and the
planewise dipole sum rule can be used as the remedy. One expects that there is no simple
rule to segment the chain molecules in calculating the local field factors. Down to the
detailed molecular level, a quantum mechanic treatment of the electron density and their
polarizability should be employed to give a more accurate description of the molecules at
the interface. Nevertheless, the above estimation can give reasonable upper and lower
bounds for the local field factors.

5.3. SHG or SFG-VS experiments to test the microscopic model

Here we discuss how SHG and SFG-VS experiments can be used to test the microscopic
model.
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The key point raised in this study is that the molecular optics treatment of the interface

nonlinear radiation can provide a detailed microscopic description of the nonlinear optical

processes and the molecular behaviour at the interface. The key to testing the microscopic
model is to find a way to determine the microscopic local field factors or to quantitatively

determine their effects in the SHG or SFG-VS experiment, and to compare these

experimental effects with the molecular details in the molecular monolayer.
There have been few attempts to try to experimentally determine the interfacial

effective optical constants with SHG [61,71] and SFG-VS [70]. All of them concluded with

a value close to the simple arithmetic average of the optical constant of the two adjacent

bulk phases. These works were not based on the microscopic model and they cannot be

used to test the microscopic model. This is because the microscopic model predicts that the
local field factors, which are connected to the effective optical constant of the interface

layer through the relationship "0 ¼ n02¼ lyy/lzz [42,54], must depend on the detailed

structure of the molecular monolayer and may have values other than the simple
arithmetic average or the prediction with the modified macroscopic Lorentz model of the

interface [54].
The first test is to determine the local field factor lyy/lzz for the closely packed

Langmuir monolayers at the air–water interface with large chromophores. According to
Equation (13), when �ii� 15 Å3 and a2� 40 Å2, one has "0 ¼ lyy/lzz� 2.10, thus n0 � 1.45.

These kinds of conditions can be easily satisfied with chromophores with two or three

phenyl groups, such as alkyl cyano-biphenyl (nCB) or alkyl cyano-triphenyl (nCT)

Langmuir films. It has been shown that in the closely packed 8CB Langmuir monolayer at
the air–water interface, since the molecular surface density is always known, a self-

consistent analysis of the polarization dependent SHG data at different surface densities

can give the molecular orientation angle and the "0 value at different surface densities

[37,111]. Such self-consistent analysis was suggested by Munn et al. before, because they
realized that the determination of the molecular orientational angle and the determination

of the interface local field factor are interconnected [87]. Such a self-consistent analysis can

only be carried out for Langmuir or Langmuir–Blodgett monolayers because their surface
densities are known and can be varied controllably. It turned out in our SHG studies that

for the 8CB monolayer, "0 changes from 1.7 to 2.4 when the surface density changes from

51 Å2 to 39 Å2 per molecule [110,111]. These results agree very well with Equation (13),

and the orientational angle thus obtained agrees well with the rod model of the
chromophore. This is a very convincing example to show that the local field factors of the

molecular monolayer do not have simple values close to the arithmetic average of the two

adjacent bulk phases. The details of this study are to be published elsewhere [110,111].
Another test can be designed with the SFG-VS measurement of small rigid linear

molecules, such as the acetonitrile molecule, at the air–liquid interface. For example,

SFG-VS can selectively measure polarization-dependent vibrational spectra of both the

–CH3 and the –CN groups of the interface acetonitrile molecule [113]. Since the molecule is

linear, the orientation angles, which are dependent on the values of "0–CN and "0–CH3
,

respectively, determined from the SFG-VS data of the –CH3 and the –CN groups, should

have the same value. Thus the ratio "0–CN/"
0
–CH3

can be determined experimentally,

without knowing the details of the interface molecular structure. Using the polarization
null angle method in SFG-VS [1,114–117], the ratio of the local field factor for the –CH3

and the –CN groups, i.e. "0–CN/"
0
–CH3

, can be obtained quite accurately from the
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experimental data. These two values are indeed significantly different from unity and it is
beyond the experimental error bar. This observation cannot be explained by the previous
models, but can be well explained and quantitatively analysed with microscopic molecular
optics theory as presented in this work, and the structure of the interfacial adsorbed
molecular layer. The details of the experimental study and analysis are going to be
reported elsewhere [118].

More SHG or SFG-VS experiments can be designed accordingly to test the
microscopic model. With the microscopic molecular optics theory of SHG and SFG-VS,
detailed analysis of SHG and SFG-VS data is now possible with the recent development of
quantitative polarization and configuration dependent measurements in SHG and
SFG-VS [1,2,40,41,119,120]. These studies can not only provide a test for the microscopic
model, but can also provide detailed information of the molecular interface according to
the microscopic model.

6. Concluding remarks

The aim of this work is to present a coherent description of the microscopic theory of
surface nonlinear optical spectroscopy for solving practical problems in understanding
the details of the molecular interface. SHG and SFG-VS have been proven to be
sensitive enough to probe interfacial adsorbates with submonolayer coverage
[4,6,11,12]. Therefore, the macroscopic theory treating the submonolayer interface as
a separate entity, i.e. the infinitesimally thin polarization layer, is in question. To
address this question, the treatment based on the more realistic discrete induced dipole
lattice model is thus described in this report. Recent developments in the quantitative
polarization and symmetry analysis in SHG and SFG-VS have provided new
opportunities in quantitative interface studies [1,2]. These developments also provided
more accurate data to test the SHG and the SFG-VS theories at the detailed molecular
level [37,40,41,54,61].

The microscopic molecular optics theory of the surface SHG and SFG-VS for the
monolayer and submonolayer is based on the treatment of the molecular interface with
the realistic discrete induced dipole lattice model. In this theory, the following
derivations are presented and discussed: (a) the detailed expressions of the local field
factors in the interface molecular layer; (b) the detailed expressions for the far-field
radiation of the SHG as well as the SFG-VS process from the interface induced dipoles.
It turned out that the asymptotic results for the far-field radiation has the same form as
the results derived from the macroscopic infinitesimally thin polarization sheet layer
treatment first developed by Heinz and Shen in the early 1980s using the Maxwell
equations with boundary conditions [6,57], as well as later modifications with the
consideration of the microscopic local field factors using the classical dipole model
[42,54,59].

Microscopic molecular optics theory of surface SHG and SFG-VS is capable of
providing more detailed microscopic–molecular level information of the molecular
interface. According to Born and Wolf, molecular optics theory directly connects
macroscopic optical phenomena to molecular properties, and can provide deeper physical
insight into electromagnetic interaction problems than does the rather formal approach
based on Maxwell’s phenomenological equations [55,56]. Based on the microscopic and
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discrete induced dipole lattice model, the problem of the macroscopic dielectric constants

of the interfacial molecular monolayer is discussed and clarified. The macroscopic

dielectric constant of the molecular submonolayer and monolayer needed in the

macroscopic theory is no longer an issue in the microscopic model of the surface

nonlinear optics.
In their classic paper on nonlinear optics, Bloembergen and Pershan [35] showed that

the approach using the integral equation based on the Ewald–Oseen extinction theorem

reached exactly the same results for the nonlinear response from the nonlinear plate
parallel slab [35,91]. Since in that work the slab was treated as a continuous medium,

the molecular optics approach was more complex and was simply redundant to the

macroscopic theory, i.e. no additional physical insight was reached beyond

the macroscopic approach. In contrast, when the microscopic molecular optics approach

is combined with the discrete dipole lattice model, it can directly connect the microscopic

molecular properties and the macroscopic optical phenomenon. The benefit is not only the

consistency in the theoretical treatment as discussed above, but also the possibility of

having a microscopic molecular theory for the surface nonlinear optics for future

applications in understanding the molecular level details at the molecular interface.
Based on the planewise dipole sum rule and the previous work by Munn et al., the issue

of how the microscopic local field factors can be evaluated was also discussed. According

to these results, the effectiveness and limit of the simple point-dipole lattice model on the
quantitative evaluation of the effective dielectric constant of the interfacial molecular

monolayer are discussed and evaluated. For simple and small molecular groups, the simple

point-dipole lattice model does provide a good approximation of the microscopic local

field effects of the interfacial molecular monolayer. The SHG and SFG-VS experimental

tests of the microscopic discrete dipole lattice model are also discussed. With these

developments, many previous SHG and SFG-VS studies can be better understood and

evaluated. Moreover, these developments can provide a full microscopic description of the

nonlinear radiation from the molecular interface. Detailed molecular information can be

obtained from the model developed in this work, together with better and more accurate

polarization measurement data in SHG and SFG-VS.
Furthermore, it is to be remembered that the microscopic model of the interface is

not limited to the two-dimensional point-dipole lattice model. The microscopic molecular

optics theory allows the incorporation of different microscopic interface models. This

allows detailed studies of the interface structure at the microscopic level, without being

annoyed by the issue of the undefinable macroscopic dielectric constant of the

interface layer.
The microscopic molecular optics approach can also be applied to the treatment of the

ellipsometry response and polarized ATR-FTIR spectroscopy from molecular monolayer

interfaces and thin films. When ellipsometry and polarized ATR-FTIR are to be applied to

study such interfaces and films, a microscopic molecular theory for the ellipsometry and

polarized ATR-FTIR is certainly needed. So far, the treatment of the ellipsometry or

polarized ATR-FTIR and the treatment of the SHG or SFG-VS are not fully consistent

in their description of the anisotropy in the molecular layer. We shall discuss these
issues elsewhere.

In conclusion, an effective microscopic molecular optics theory as described in this

report may shed new light on both linear and nonlinear optics interface studies.
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